
#001 JavaScript with Dimos: Variables and
Constants

Hey there 👋 I am Dimos, a senior software engineer and software architect at
arconsis. From time to time, I publish articles into the series “JavaScript with
Dimos”, where I am trying to analyze a JavaScript topic and to focus on the
core concepts of JavaScript.

In the chapter “JavaScript’s Grammar” we will take a look at JavaScript’s basic
grammar, variable declarations and data types.

Chapter’s Posts Roadmap

Variables and Constants (This article)
Data Types

Today, in the first article of this chapter, we will explore JavaScript variables
and constants, how to initialize and use them and their differences.

JavaScript Variables

A variable is just a container to store data and hold its value. For example we
can use a variable to store a number, or a string:

var str = 'Hello!';

https://www.eldimious.com/
https://www.arconsis.com/
https://medium.com/arconsis/002-javascript-with-dimos-data-types-5ad3efc79cba

In above example, str is a variable we use to store a text.

Variable’s Declaration

It is essential to know how to declare variables in every programming
language. The var, let, and const keywords are used to declare variables in
JavaScript. There are some significant differences among them which we will
analyze later in this tutorial.

var x = 1;

let y = 2;

const z = 3;

Variable’s Initialization

We can use the assignment operator = in order to initialize a variable and
assign it a value. For example:

var num = 3;

let str = 'Hello!';

const isValid = true;

let str2;

str2 = 'Hey!';

In the above example, num was initialized with 3 as the initial value. As we can
see, we can declare and initialize a variable at the same time (let str = 'Hello!';)
or we can first declare it (let str2;) and then initialize it str2 = 'Hey!';.

JavaScript supports multiple variable declaration in a single sentence just like
below:

let x = 1, y = 2, z = 3;

Variable’s Value Re-assignment

In JavaScript, it is possible to mutate the variable’s value, like below:

let x = 1;

console.log(x); // output 1

x = 2;

console.log(x); // output: 2

var y = 'Hello!';

console.log(y); // output: Hello!

y = 'Hey!';

console.log(y); // output: Hey!

JavaScript Constants

Similar to variables, we can declare constants in JavaScript. We can use const
statement (was introduced in the ES6 version) to create constants. For example:

const x = 1;

Constants are similar to variables, apart from:

declaration and initialization must take place at same time.
cannot be re-assigned after initialization.

For example:

const x; // Uncaught SyntaxError: missing = in const declaration

x = 1;

console.log(x);

const x = 1;

x = 3; // Uncaught TypeError: invalid assignment to const 'x'

console.log(x);

Be careful: Although we cannot mutate a constant (applies only to primitive values)
we can still mutate (update, add, or remove) properties of an object declared by const.
This is possible because the object declared by const is still pointing to the same
object, even though its content has been changed.

const vehicle = { type : 'car'};

console.log(vehicle.type); // output: "car"

vehicle.type = 'bike';

console.log(vehicle.type); // output: "bike"

var statement

The var statement defines a function-scoped or globally-scoped variable
(scopes will be discussed in next article). We can assign a value optionally, on
variable declared by var. It does not support block-level scope, which means
that a variable declared inside {…} (for example inside for or if statement)
cannot be accessed outside the block, which potentially can lead to bugs.

var num = 1;

if (num === 1) {

 var num = 2;

 console.log(x); // output: 2

}

console.log(num); // output: 2

a) var is function-scoped

Function scope means that variables defined inside a function cannot be
accessed from anywhere outside the function. For example:

function foo() {

 var x = 1;

 function baz() {

 var y = 2;

 console.log(x); // output: 1 (baz() can see outer scope)

 console.log(y); // output: 2

 }

 baz();

 console.log(x); // output: 1 (as x is in same function scope)

 console.log(y); // Uncaught ReferenceError: y is not defined

}

foo();

Another example:

var animal = 'dog';

function foo() {

 animal = 'cat';

 console.log(animal); // output: "cat"

}

console.log(animal); // output: "dog"

foo();

console.log(animal); // output:"cat"

// output: "dog", "cat", "cat"

b) var gets hoisted

The variables declared by var are processed before any code is executed in a
process known as “hoisting” with undefined as initial value. If we declare a
variable anywhere in the code using var, is the same as declaring it at the top.
Hence a var can appear to be used before it’s declared, which is called

https://developer.mozilla.org/en-US/docs/Glossary/Hoisting

“hoisting”. In other words, the term “hoisting” means that all var and function
declarations are “pulled” to the top of the code when the code is run.

animal = 'dog';

var animal;

// ...is equivalent (hoisting):

var animal;

animal = 'dog';

console.log(foo); // output: undefined

var foo = 1;

console.log(foo); // output: 1

Or another example:

function foo() {

 console.log(baz); // output: undefined

 var baz = 3;

 console.log(baz); // output: 3

}

// ...is equivalent (hoisting):

function foo() {

 var baz;

 console.log(baz); // output: undefined

 bar = 3;

 console.log(baz); // output: 3

}

Recommendation: It’s best to declare variables always at the top of their scope, to be
clear which is their scope.

c) var can be re-declared

Variables declared with var can be re-declared with a new value. For example:

var x = 1;

console.log(x); // output: 1

var x = 3;

console.log(x); // output: 3

d) var can be re-assigned

Variables declared by var can be re-assigned to a new value. For example:

https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting

var x = 1;

console.log(x); // output: 1

x = 3;

console.log(x); // output: 3

let statement

The let statement was introduced in the ES6 version. The let and the var
statements have some similarities but their main difference is that let declares a
block-scoped variable and although it can be reassigned it cannot be re-
declared. Also compared to var statements, a variable declared using let will
not be hoisted.

a) let is block-scoped

Unlike the var keyword, which defines a global or function-scoped variable, the
let keyword allows us to define variables that are block-scoped. This means
that variables are limited to the scope of the block statement or expression on
which it is used, as well as in any nested sub-blocks.

let x = 3;

if (x === 3) {

 let x = 6;

 console.log(x); // output: 6

}

console.log(x); // output: 3

Another example:

function foo() {

 let x = 3;

 function baz() {

 let x = 6; // different variable

 console.log(x); // output: 6

 }

 baz();

 console.log(x); // output: 3

}

foo();

console.log(x); // output: ReferenceError: x is not defined (defined in function scope, cannot be accessed outer)

b) let cannot be hoisted

The variables declared by let statement, cannot be hoisted and a
ReferenceError is expected to be thrown, compared to variables declared by
var. For example:

console.log(x); // Uncaught ReferenceError: can't access lexical declaration 'x' before initialization

let x = 1;

c) let cannot be re-declared

If we try to re-declare the same variable by let within the same function or
same block, then a SyntaxError is expected to be thrown.For example:

if (true) {

 let x = 1;

 let x = 3; // Uncaught SyntaxError: redeclaration of let x

}

Or another example:

function foo() {

 let x = 3;

 let x = 6; // Uncaught SyntaxError: redeclaration of let x

}

foo();

Also if we combine var and let statements, then it is possible to get a
SyntaxError, because var is hoisted to the top of the block. As we can see
below, the variable declared by var , will introduce re-declaration of x , as is not
block-scoped and will be “pulled” on top of the code because of the “hoisting”.

let x = 3;

{

 var x = 5; // Uncaught SyntaxError: redeclaration of let x, Previously declared

}

d) let can be re-assigned

Variables declared by let keyword can be re-assigned with a new value. For
example:

let x = 1;

console.log(x); // output: 1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ReferenceError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SyntaxError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SyntaxError

x = 3;

console.log(x); // output: 3

const statement

The const keyword and let keyword have a lot of similarities, as both are
blocked scoped, cannot be hoisted and cannot be re-declared. The only
difference is that variables declared by const cannot be reassigned. Hence,
every const variable must be initialized with a value at the time of declaration.

a) const is block-scoped

The const statement allows us to define variables that are block-scoped. This
means that variables are limited to the scope of the block statement or
expression on which it is used, as well as in any contained sub-blocks.

const x = 3;

if (x === 3) {

 const x = 6;

 console.log(x); // output: 6

}

console.log(x); // output: 3

Or another example:

function foo() {

 const x = 3;

 function baz() {

 const x = 6; // different variable

 console.log(x); // output: 6

 }

 baz();

 console.log(x); // output: 3

}

foo();

console.log(x); // output: ReferenceError: x is not defined (defined in function scope, cannot be accessed outer)

b) const cannot be hoisted

The variables declared by const statement, cannot be hoisted and a
ReferenceError is expected to be thrown, compared to variables declared by
var. For example:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ReferenceError

console.log(x); // Uncaught ReferenceError: can't access lexical declaration 'x' before initialization

const x = 1;

c) const cannot be re-declared

If we try to re-declare the same variable by const within the same function or
same block , then a SyntaxError is expected to be thrown. For example:

if (true) {

 const x = 1;

 const x = 3; // Uncaught SyntaxError: redeclaration of let x

}

Or another example:

function foo() {

 const x = 3;

 const x = 6; // Uncaught SyntaxError: redeclaration of let x

}

foo();

Also if we combine var and const statements, then it is possible to get a
SyntaxError, because var is hoisted to the top of the block. As we can see
below, the variable declared by var , will introduce re-declaration of x , as is not
block-scoped and will be “pulled” on top of the code because of the “hoisting”.

const x = 3;

{

 var x = 5; // Uncaught SyntaxError: redeclaration of let x, Previously declared

}

d) const cannot be re-assigned

Variables declared by const keyword cannot be re-assigned with a new value
and a TypeError is expected to be thrown. For example:

const x = 1;

console.log(x); // output: 1

x = 3;

console.log(x); // output: TypeError: invalid assignment to const 'x'

Note: If we know that the variable’s value will not change, it’s preferable to use const
instead of var or let.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SyntaxError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SyntaxError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypeError

Those are all we need to know about variables and constants declaration in
JavaScript and their differences. Meanwhile, please feel free to post any
questions, comments, or feedback in the comment section below.

Follow on Twitter here!

Follow on Github here!

See you until next time!

References

1. https://www.programiz.com/javascript/variables-constants
2. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var
3. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
4. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
5. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_Types
6. https://github.com/getify/You-Dont-Know-JS

By Dimosthenis Botsaris on May 12, 2022.

Canonical link

Exported from Medium on May 12, 2022.

https://twitter.com/el_dimious/
https://github.com/eldimious
https://www.programiz.com/javascript/variables-constants
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_Types
https://github.com/getify/You-Dont-Know-JS
https://medium.com/@el_dimious
https://medium.com/p/555599d765df
https://medium.com/@el_dimious/001-javascript-with-dimos-variables-and-constants-555599d765df
https://medium.com/

