
AWS Serverless
Introduction

AWS main serverless components

• AWS Lambda
• DynamoDB
• AWS Cognito
• AWS API Gateway
• Amazon S3
• AWS SNS & SQS
• AWS Kinesis Data Firehose
• Aurora Serverless
• Step Functions
• Fargate

What is Serverless?

1. Allows developers to create and run apps and services without having to worry about
infrastructure.

2. Apps still run on servers, but AWS handles all of the server management.

3. AWS Serverless includes from FaaS (lambda) to Databases (dynamoDB), Api Gateway,
Queues, Storage etc.

4. Developers can focus on building product features instead of managing servers.

AWS Lambda - Features (1)

Amazon Lambda: a FaaS, which allows developers to run code without worrying about
infrastructure or servers.

1. Pay for the consumed time on computing.

2. Runs on demand.

3. Supports auto concurrency (up to 1000 concurrent executions) and scaling controls.

4. Integrates with other AWS services.

AWS Lambda - Features (2)

5. Supports many programming languages (Node.js, Python, Java, Golang, Custom Runtime
API).

6. Configure RAM to increase compute power.

7. Supports Docker via Lambda Container Image.

8. Supports File systems access.

9. Supports Lambda Layers to externalize dependencies (e.g. npm packages) for reusability
among other lambdas.

AWS Lambda - Interactions

AWS Lambda - Invocation Sync

1. We can choose to invoke a lambda synchronously or asynchronously.

2. With synchronous invocation, we wait for the function to process the event and return a
response or it times out.

3. Following Amazon services support sync invocation: ALB, Cognito, Lex, Alexa, API Gateway,
CloudFront (Lambda@Edge), Kinesis Data Firehose

AWS Lambda - Invocation Async

1. With asynchronous invocation, Lambda queues the event for processing and returns a
response immediately.

2. Handles retries and can send invocation records to a destination.

3. We have to set the invocation type parameter to Event.

4. Following AWS services supports async invocation: S3, SNS, SES, CloudFormation,
CloudWatch Logs, CloudWatch Events, CodeCommit

AWS Lambda - Event Source Mapping

1. Polls records from services (Kinesis, SQS, DynamoDB Streams) and invokes functions.

2. Batch of records are pulled from poller.

3. Event Source Mapping handles the polling and invokes lambda synchronously.

AWS S3 - Features

Amazon S3 is a cloud object storage service, which is used to store and protect any amount of data

1. Scalability.
2. Data availability (99.9%).
3. High durability (99.999999999%) of objects across multiple AZs.
4. Security / Encryption.
5. Versioning.
6. Files can have size from 0B to 5TB.
7. Unlimited storage.
8. Account -> Bucket -> Object (Files are stored in buckets as objects using a key)

AWS S3 - Storage Classes

1. S3 Standard: high durability, availability, and performance object storage for frequently
accessed data.

a. cloud applications, dynamic websites, content distribution.

2. S3 Standard-Infrequent Access: data that is accessed less frequently, rapid access when
needed.

a. long-term storage, backups, data store for disaster recovery files.

3. Amazon Glacier: Used for data archiving, highest performance, most retrieval flexibility
a. lowest cost archive storage in the cloud.

4. Amazon Glacier & Glacier Deep Archive: lowest-cost storage class and supports long-term
retention.

a. use cases like access once or twice in a year

AWS S3 Storage Classes Comparison

 https://aws.amazon.com/s3/storage-classes/

https://aws.amazon.com/s3/storage-classes/

AWS SQS - Features (1)

Amazon SQS is a secure, durable hosted queue that allows to integrate and decouple distributed software
services.

1. Default SQS supports at least once delivery (Can have duplicate messages).

2. FIFO SQS, supports exactly once delivery (No duplicates).

3. Security: Encryption (In-flight encryption / At-rest encryption / Client-side encryption), Access Controls
(IAM policies), SQS Access Policies.

4. Availability: highly-concurrent access to messages and high availability for messages.

AWS SQS - Features (2)

5. Reliability: locks messages during processing, multiple producers can send and multiple
consumers can receive messages at the same time.

6. Scalability: scales transparently to handle any load increases.

7. Holds message until a consumer deletes it.

8. Message retention up to 14 days.

9. Message batches: can reduce cost and increase throughput.

AWS SQS - Features (3)

10. Message Visibility Timeout: When a message is polled, it becomes invisible to other
consumers. Default visibility timeout is 30sec. After the message visibility timeout is over, the
message is “visible” in SQS again.

11. Can delay messages to consumers up to 15 minutes (default is 0 seconds)

12. Supports Long Polling, as consumer can optionally “wait” for messages.

AWS SQS - Dead Letter Queue (DLQ)

● When a consumer fails to process a message
before the Visibility Timeout expires, the
message is returned to the queue.

● There is a configurable limit
(MaximumReceives) on how many times a
message can be returned to the queue.

● When we pass the limit, the message can be
placed in the dead letter queue (DLQ)

AWS SQS - Standard vs FIFO

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html

AWS SNS - Features (1)

Amazon SNS is a managed service that provides message delivery from publishers to subscribers
(pub-sub).

1. Sends messages to a topic.

2. Individual receiver / subscriber OR multiple receivers / subscribers (Fan-Out).

3. Supports Standard and FIFO topics. FIFO topic ensures strict message ordering, and prevent
message duplication.

AWS SNS - Features (2)

4. Message filtering. By default, each subscriber receives every message published to the topic.
To receive a subset of the messages, a subscriber must assign a filter policy to the topic
subscription

5. Message durability, supports retry mechanism.

6. Application-to-application messaging: SQS, HTTP / HTTPS, Lambda, Kinesis Data Firehose

7. Application-to-person notifications: Emails, SMS messages, Mobile Notifications

AWS SNS - Integrations

https://docs.aws.amazon.com/sns/latest/dg/welcome.html

https://docs.aws.amazon.com/sns/latest/dg/welcome.html

AWS SNS + SQS: Fan Out

● Combine SNS and SQS to support Fan-Out
Pattern (1 publisher / multiple subscribers).

● Push on specific SNS topic.

● Multiple SQS queues are subscribed to topic.

● Fully decoupled, no data loss.

● Take advantage of SQS features like delays,
retries, DLQ

AWS API Gateway - What is?

● Amazon API Gateway allows developers to create, publish, maintain, monitor, secure REST
APIs, HTTP APIs and WebSocket APIs at any scale.

● REST APIs in API Gateway are HTTP-based, stateless and support standard HTTP methods
such as GET, POST, etc.

● For WebSocket APIs then, API Gateway enables stateful, route incoming messages based on
message content.

AWS API Gateway - Features (1)

1. Stateless (HTTP and REST) APIs.

2. Stateful (WebSocket) APIs.

3. Authentication and Authorization.

4. API versioning (v1, v2...).

5. Canary release deployments to avoid breaking changes.

6. Custom domain names.

AWS API Gateway - Features (2)

7. Supports logging and monitoring of APIs using AWS CloudTrail and CloudWatch.

8. Handles request throttling.

9. Aggregates and validates requests and responses.

10. Caches responses.

11. Low cost and efficient.

12. Performance at any scale.

AWS API Gateway - Integration Types(1)

1. MOCK:
a. Integrates the API method request with the API Gateway as a "loop-back" endpoint without invoking any
backend.

2. AWS:
a. Lets an API expose AWS service actions (e.g. Lambda).
b. Must configure both the integration request and integration response.
c. Must set up necessary data mappings among request response and the opposite.

3. HTTP:
a. Lets an API expose HTTP endpoints in the backend.
b. Must configure both the integration request and integration response.
c. Must set up necessary data mappings among request response and the opposite.

AWS API Gateway - Integration Types(2)

3. AWS_PROXY (Lambda Proxy)
a. Integrate the API method request with the Lambda function-invoking action with the client request passed
through as-is.
b. No need to set the integration request or the integration response.
c. FaaS is responsible for the logic of request / response
d. No mapping template, headers, query string parameters... are passed as arguments

4. HTTP_PROXY
a. Integrate the API method request with the HTTP endpoint with the client request passed through as-is.
b. No mapping template .
c. The HTTP request is passed to the backend.
d. The HTTP response from the backend is forwarded by API Gateway.

API Gateway - Architecture Flow

Serverless (API-Gateway and Lambdas)

Let’s see some code snippets!
(https://github.com/arconsis/aws-network-microservices-warmup)

https://github.com/arconsis/aws-network-microservices-warmup

References

● https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
● https://docs.aws.amazon.com/sns/latest/dg/welcome.html
● https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcom

e.html
● https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
● https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
● https://www.udemy.com/course/aws-certified-solutions-architect-associate-saa-c02/

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://www.udemy.com/course/aws-certified-solutions-architect-associate-saa-c02/

