
JavaScript	with	Dimos:	Intro	to	Async
Functions

Hey	there		I	am	Dimos,	a	senior	software	engineer	and	software

architect	at	arconsis.	From	time	to	time,	I	publish	articles	into	the

series	“JavaScript	with	Dimos”,	where	I	am	trying	to	analyze	a

JavaScript	topic	and	to	focus	on	the	core	concepts	of	JavaScript.

JavaScript	is	a	single	threaded	language	and	executes	code	blocks

by	order	from	top	to	bottom,	therefore,	it	is	synchronous	in	nature.

Sometimes	we	may	need	to	use	an	asynchronous	function	for	example	to

fetch	data	from	an	API.	An	operation	like	this	takes	time	to	complete,

and	a	blocking	approach	would	negatively	impact	user	experience.	

Thanks	to	JavaScript	event	loop,	we	are	able	to	do	non-blocking

processes	by	using	a	callback	function	and/or	a	promise	function.	Using

a	non-blocking	approach	we	can	reduce	the	JavaScript	main	thread	load

and	improve	our	code	performance.

JavaScript	introduced	async	and	await	keywords	as	an	addition	to

EcmaScript	2015.	In	this	article,	we	are	going	to	talk	about	async

functions,	and	how	they	work.

Intro	to	JavaScript	Promises
A	Promise	is	a	proxy	for	a	value	not	necessarily	known	when	the	promise	is
created.	It	allows	us	to	associate	handlers	with	an	asynchronous	action’s
eventual	success	value	or	failure	reason.

Therefore,	a	promise	is	a	special	JavaScript	object	which	represents	a

future	result	of	an	asynchronous	action.

A	promise	has	three	states:

1.	 pending — Initial	state	which	indicates	that	the	request	is	pending,	and	is	neither
fulfilled	nor	rejected.

2.	 fulfilled — Indicates	that	the	operation	was	completed	successfully.
3.	 rejected	—Indicates	that	the	operation	failed.

Intro	to	async	functions

https://www.eldimious.com/
https://www.arconsis.com/


The	async	function	is	a	function	that	is	declared	using	the	async

keyword	and	returns	a	AsyncFunction	object.	When	we	call	an	async

function,	it	always	returns	a	promise.	Hence,	async	functions	allow	us	to

write	promise-based	code	(async/await	is	built	on	top	of	promises)

as	if	it	were	synchronous,	but	without	blocking	the	main

thread.	Below	we	can	find	some	ways	to	declare	async	functions:

async	function	functionName(params)	{
				#	code	block
}

const	functionName	=	async	function	functionName(params)	{
				#	code	block
}

const	functionName	=	async	(params)	=>	{
				#	code	block
};

As	we	can	see,	we	can	declare	async	functions	as	every	other	function.

The	only	difference	is	the	usage	of	the	async	keyword.

Below	we	can	find	out	how	we	can	call	an	async	function:

try	{
				const	result	=	await	functionName(params)
}	catch	(error)	{
				console.error(`Async	function	threw	an	error:	${error}`)
}

As	we	can	see	above,	the	execution	of	an	async	function	is	equivalent	to

execution	of	a	regular	synchronous	JavaScript	function	and	the	only

difference	is	the	usage	of	await	keyword.

How	async	functions	work

The	await	keyword	tells	JavaScript	to	“wait”	until	the	promise	is	settled

before	executing	the	rest	of	the	code	block.	So	they	are	simply	syntactic

sugar	for	creating	functions	that	return	and	wait	for	Promises.

The	async/await	syntax	improves	readability	by	letting	us	write	code	as

synchronously.

Async	function	is	declared	by	using	the	word	async	in	their	declaration.
await	keyword	is	permitted	within	async	functions	and	can	only	be	used	inside	an
async	function,	otherwise	we	will	get	Error.
Always	returns	Promises.
Code	can	be	“paused”	waiting	using	await	keyword.
await	returns	whatever	the	async	function	returns	when	it	is	done.	It	will	return
result	if	the	Promise	is	fulfilled	or	will	throw	an	error	if	the	Promise	is	rejected.
If	an	async	function	throws	an	exception,	the	exception	will	bubble	up	to	the	parent
functions	just	like	in	normal	JavaScript,	and	can	be	caught	with	try/catch	or
using	.catch()	method	directly	in	await	asyncFunc.catch(error	=>	{	})	just	like	in
Promises.

Fulfilling	the	Promise	of	an	async	function:

async	function	asyncFunc()	{
				return	'result';
}



which	is	equivalent	to:

function	asyncFunc()	{
				return	Promise.resolve('result');
}

which	is	same	to:

function	asyncFunc()	{
				return	new	Promise((resolve,	reject)	=>	{
								return	resolve('result');
				});
}

Rejecting	the	Promise	of	an	async	function:

async	function	asyncFunc()	{
				return	Promise.reject(new	Error('We	have	error!'));
}

which	is	equivalent	to:

async	function	asyncFunc()	{
				return	Promise.reject(new	Error('We	have	error!'));
}

which	is	same	to:

async	function	asyncFunc()	{
				return	new	Promise((resolve,	reject)	=>	{
								return	reject(new	Error('We	have	error!'));
				});
}

The	await	keyword	is	used	to	handle	Promises	inside	the	async	function.

Therefore,	handling	results	and	errors	of	asynchronous

computations	takes	place	via	await.	The	operator	await	“waits”	for	the

Promise	to	be	settled.	It	“pauses”	the	function	until	asyncFunc	is	done

(fulfilled	or	rejected),	and	returns	the	result	(resolved	result	or	error):

If	the	Promise	is	fulfilled,	the	result	of	await	is	the	fulfillment	value.

async	function	asyncFunc()	{
				const	result	=	await	otherAsyncFunc();
				console.log(result);
}

//	which	is	equivalent	to:
function	asyncFunc()	{
				return	otherAsyncFunc()
				.then(result	=>	{
								console.log(result);
				});
}

If	the	Promise	is	rejected,	await	throws	the	rejection	value.

async	function	asyncFunc()	{
				try	{
								await	otherAsyncFunc();
				}	catch	(err)	{
								console.error(err);
				}
}

//	which	is	equivalent	to:
function	asyncFunc()	{



				return	otherAsyncFunc()
								.catch(err	=>	{
												console.error(err);
								});
}

Error	Handling

An	async	function	has	two	possible	return	values:	resolved	value,	and

rejected	value.	We	can	use	.then()	for	normal	cases	and	.catch()	for

exceptional	cases.	Let’s	explore	how	we	handle	errors	in	async	functions:

1)	try…catch	statement

The	most	standard	way	is	to	use	try...catch	statement.	When	await	a	call,

any	rejected	value	will	be	thrown	as	an	exception.	Here	is	an	example:

async	function	asyncFunc()	{
				try	{
								await	otherAsyncFunc();
				}	catch	(err)	{
								console.error(err);
				}
}

The	error	is	exactly	the	rejected	value.	After	we	caught	the	exception,	we

have	several	ways	to	deal	in	catch(err)	{…}block	with	it:

Handle	the	exception,	and	return	a	normal	value	(not	an	error).	Not	using	any
return	statement	in	the	catch	block	is	equivalent	to	using	return	undefined;	and	is	a
normal	value	as	well.	catch(err)	{	return	'fail'	}
Throw	error,	if	you	want	the	caller	to	handle	the	exception.	catch	(err)	{	throw	err
}
Reject	it,	like	return	Promise.reject(error).	This	is	equivalent	to	throwing	an	error.
catch	(err)	{	return	Promise.reject(err)	}

2)	Using	.catch

As	we	declared	before,	the	functionality	of	await	is	to	“wait”	for	a

promise	to	be	fulfilled	or	rejected.	That’s	why	we	can	handle	the	await

otherAsyncFunc	as	a	Promise	using	then	or	catch	method	(as	an	async

function	always	returns	a	Promise).	Therefore	we	can	write	error

handling	like	this:

function	asyncFunc()	{
				const	result	=	await	otherAsyncFunc()
								.catch((error)	=>	{	console.log(error);	});
}

Serial	execution	of	asynchronous
functions

The	below	code	block	runs	two	asynchronous	functions,	asyncFunc1()

and	asyncFunc2(	in	sequence.	The	code	execution	will	wait	until

asyncFunc1()	returns	(resolved	/	rejected),	via	await	asyncFunc1()

before	starting	asyncFunc2()	execution.	Notice	that	asyncFunc2()	does

not	depend	on	the	result	of	asyncFunc1()	as	using	of	await	runs	these

two	functions	sequentially.



async	function	asyncFunc1()	{
			return	1;
}

async	function	asyncFunc2()	{
			return	2;
}

(async()	=>	{
				const	result1	=	await	asyncFunc1();
				const	result2	=	await	asyncFunc2();
})();

Below	we	can	see	how	we	can	iterate	over	async	iterable	arrays

sequentially.	As	we	can	see	there	are	2	ways:

Using	for	await…of	statement,	which	creates	a	loop	iterating	over	async	iterable
objects	as	well	as	on	sync	iterables.
Using	Array.prototype.reduce()	method,	which	executes	a	reducer	function	for	array
elements	and	returns	a	single	value.

const	arr	=	[1,	2,	3,	4,	5];

async	function	asyncFunc(item)	{
				return	item;
}

(async()	=>	{
				const	results	=	await	arr.reduce(async	(promise,	item)	=>	{
						const	accumulator	=	await	promise;
						const	result	=	await	asyncFunc(item)
						return	[...accumulator,	result]
				},	Promise.resolve([]));				
				console.log('results',	results);	//	Output:	[1,	2,	3,	4,	5]
})();

//	which	is	equivalent	to:
(async()	=>	{
				const	results	=	[]
				for	await	(const	item	of	arr)	{
						results.push(await	asyncFunc(item));
				}
				console.log('results',	results);	//	Output:	[1,	2,	3,	4,	5]
})();

Concurrent	execution	of	asynchronous
functions

As	we	can	see	below,	using	Promise.all()	method	we	can	execute	these

async	functions	(asyncFunc1(),	asyncFunc2())	concurrently.	This

method	combines	all	the	promises	and	returns	a	single	promise,

resolved	to	an	array	of	the	results	of	the	input	promises.	If	one	promise

throws	an	error,	then	Promise.all()	will	be	rejected	immediately	with

the	first	rejection	message	/	error.

async	function	asyncFunc1()	{
			return	1;
}

async	function	asyncFunc2()	{
			return	2;
}

(async()	=>	{
				const	results	=	await	Promise.all([asyncFunc1(),	asyncFunc2()]);
				console.log(results);	//	Output:	[1,	2]
})();

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for-await...of
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all


Below	we	can	see	how	we	can	iterate	over	async	iterable	arrays

concurrently.	We	can	combine	Array.prototype.map()	built-in	array’s

method	which	uses	a	callback	to	apply	the	function	over	each	array’s	and

returns	an	array	of	values,	with	Promise.all()	method.	The

Array.prototype.map()	method	is	a	synchronous	operation,	but

combined	with	async/await	leads	to	an	array	of	promises.	The	final

resolved	value	is	an	array	of	the	results	of	the	input	promises,	and

because	of	using	Promise.all()	the	execution	will	be	rejected

immediately,	if	a	promise	throws	an	error.

const	arr	=	[1,	2,	3,	4,	5];

async	function	asyncFunc(item)	{
				return	item;
}

(async()	=>	{
				const	results	=	await	Promise.all(arr.map(async	(item)	=>	{
						const	res	=	await	asyncFunc(item);
						return	res;
				}));
				console.log('results',	results);	//	Output:	[1,	2,	3,	4,	5]
})();

Advantages	of	async/await
Readability:	As	we	can	see	from	above	examples,	async/await	makes	the	code
cleaner	and	more	readable	compared	to	promises	style.
Error	handling:	We	can	handle	both	asynchronous	and	synchronous	errors	using
try/catch.

Avoiding	common	pitfalls
Avoid	abuse	await,	when	we	can	execute	async	calls	in	parallel	unless	they	need	to
be	done	synchronously.
Avoid	combining	await	and	return	statements	together,	e.g.	await	return
Promise.resolve(“result”)	.	Instead	we	can	just	return	a	promise	via:return
Promise.resolve(“result”)	and	“await”	the	promise	on	execution.

Conclusions
An	async	function	always	returns	Promises,	whether	you	use	await	or	not.
They	are	simply	syntactic	sugar	for	creating	functions	that	return	and	wait	for
Promises.
If	no	await	is	present	the	execution	is	not	“paused”	and	the	result	of	it	settling	is
never	handled,	as	the	promise	starts	its	execution	when	we	invoke	it.	Therefore	it
synchronously	returns	a	pending	promise	as	didn’t	tell	JavaScript	to	“wait”.
The	async	keyword	just	declares	that	the	async	function	returns	a	value	which	is
guaranteed	to	be	a	promise,	so	that	callers	can	call	asyncFunc().then(…)	or	await
asyncFunc()	safely.	Therefore	when	we	use	async	keyword	we	create	an
asynchronous	functions	that	always	return	a	Promise.
We	can	handle	an	async	function	when	we	call	it,	exactly	like	Promise.
await	operator	"pauses"	an	async	function.
await	returns	whatever	the	async	function	returns	when	it	is	done.	It	will	return
result	if	Promise	is	fulfilled	or	will	throw	an	error	if	Promise	is	rejected.
Best	approach	to	handle	errors	of	an	async	function	is	using	try...catch	statement,
but	of	course	we	can	use	.catch()	method	directly	in	async	function	when	we	call	it.

Those	are	all	we	need	to	know	to	start	using	an	async	function	in

JavaScript.	Meanwhile,	please	feel	free	to	post	any	questions,

comments,	or	feedback	in	the	comment	section	below.

Follow	on	Twitter	here!

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://twitter.com/el_dimious/


Follow	on	Github	here!

Further	Reading

1.	 https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/async_function

2.	 https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/await

3.	 https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise

4.	 https://javascript.info/async
5.	 https://exploringjs.com/impatient-js/ch_async-functions.html
6.	 https://www.tabnine.com/academy/javascript/how-to-use-asynchronous-

functions/

By	Dimosthenis	Botsaris	on	May	2,	2022.

Canonical	link

Exported	from	Medium	on	May	12,	2022.

https://github.com/eldimious
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://javascript.info/async
https://exploringjs.com/impatient-js/ch_async-functions.html
https://www.tabnine.com/academy/javascript/how-to-use-asynchronous-functions/
https://medium.com/@el_dimious
https://medium.com/p/44697974ae73
https://medium.com/@el_dimious/javascript-with-dimos-intro-to-async-functions-44697974ae73
https://medium.com/

